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Outline

o Overview and motivation

e UCAV Simulation Issues
o« Simulation hierarchies

¢ Static Case Validation of DES
¢ Forced Motion Validation of DES
* Embedded LES Modificationsto DES

¢ Future Areas of Research Necessary

¢ Conclusions




UCAYV Simulation
SES

Unmanned Combat Air Vehicles are capable of super-maneuverability
Main Challenges

Maneuvers occur at high Reynolds numbers for which the underlying fluid
motion is usually turbulent

Incorporates massively separated flows and complicated vortical flows
Complete simulation requires solid-body motion, 6-DOF, and aeroelasticity
Wind tunnel tests problematic
Important Reynolds number effects
Motion mechanical systems intrusive
Flight tests costly, time-consuming
Computational modeling an important
element for advancing fundamental

understanding and engineering prediction




Unmanned Combat Air £,
Vehicles (UCAYV)

Simulation provided by Mr Ken Wurtzler, Cobalt Solutions LLC




Massive Separations/Vortical [A»¥
Flowfields

¢ Challenges and issues
o flow fields areinherently unsteady, chaotic, and three-
dimensional

» accuracy iscrucial at high angle of attack: lift, drag, and
moments

» complex nature of massive separ ation/vortical flowfields
 defeats conventional turbulence modéls

e higher fidelity computational techniquesrequired

o flow fields are described by the Navier-Stokes
equations

» analytical solution for aircraft not possible




Choice of the computational model

¢ Direct Numerical Simulation (DNS)

« Solution of the Navier-Stokes equations without use of an explicit
turbulence —limited to low Reynolds numbers

o powerful research tool
o ready for full aircraft in ~2080

¢ |Large Eddy Simulation (LES)

o direct resolution of the large, ener gy-containing scales of the
turbulent flow, model only the small eddies

« high computational cost in boundary layers
o ready for full aircraft in ~2045

+ Reynolds-average Navier-Stokes (RANS)
o modd the entire spectrum of turbulent motions
o Highly unreliable performancein separated flows
o ready for full aircraft today




Detached-Eddy Simulation
(DES)

1S

* 'il""LlrbuIence modeling approach proposed by Spalart et al.
(1997)

o Combines L arge Eddy Simulation, and Reynolds-
Aver aged approaches

o Designed to provide accur ate solutions for massively
separ ated flows

» Can resolve unsteady flow features
» Aero-acoustics, aero-elasticity

o« RANS model responsible for predicting BL growth
and separation (NUMERICALLY FEASIBLE)

o L ES model responsible for prediction of unsteady
flow In separated region (ACCURATE)




Flow Solver — Cobalt

% CHSS Developed
* Hybrid-Unstructured, Compressible Solver

¢ Spatial Operator

o Riemann Solver

o Least Squares Gradients

o TVD limiting

o Second order accurate
Temporal integration

« Point-implicit

o Newton sub-iteration

o Second order accurate
Parallel Performance

« Domain decomposition usng ParMETIS

« MPI

o Over 98% efficient on 1024




Static Case Validation of
Detached Eddy

Simulation




Delta Wing Vortex Breakdown 3 ¥

Photo Courtesy of NASA
P Delta Wir
111?6 millian,
eal Fine Gr

s Scott Morton (P1), Jim Forsythe, Tony Mitchell

* AFOSR project: Aeroelasticity predictions
(PM: Tom Beutner, John Schimisseur)

s AlAA 02-0587




seiy Dellle Bing 4l 27 Degress 0K
Iy Fumsher (OLE]
120 Celle

. Izo-purlece of ¥-Marilatiy . J5u-gurlece of ~Variiaty . lso-gurlece of - urlece of ¥-Vartialiy
Vorticliy Magnliude - ] Worlicity Megnliude W 100m Vorticliy Magnliude - m ¥ Magnllude - ]
{Colored by T =4Yoriciiy] ] {Colered by ¥-Yorifciiy] ’d Colared by ¥=Yoriciir] ] i ¥ =¥oriaiix] ]

. ——— Coarse Grid (1.188M Cells)
10? - ———— Medium Grid (2.671M Cells)
— ——— Fine Grid (6.565M Cells)
-~ —— Real Fine Grid (10.5M Cells)
10t 04 __ (Experimental Peak Approx. 0.5)
5 |
= 10° -
o =
% 0.3
o 10" E o SH :
o E 2 N
L B ~ =
glo'2 E 0.2
S |
“10°k B
E Coarse Grid (1.2M Cells) B
N Medium Grid (2.7M Cells) 0.1
10° Fine Grid (6.7M Cells) B
g Real Fine Grid (10.5M Cells) n
s ] R | ] L1 0 N BT | [ SR S A SR TR N B
0.7 10* 0 0.25 05 0.75 1
St (fc/Uy) Xlc




Coarse Grid Real Fine Grid

DR e
e o L

D o

AR

o D
L



X,, (% Chord)

Normal Force Power

N
e
TTTITO] T TTI T T T T T

10"

10°

©
iy

0.68

0.66

0.64

0.62

°
o

o
3
©

o
&
o

0.54

0.52

©
o

Normal Force Power
Spectral Density Analysis

Coarse Grid (1.2M Cells)
Medium Grid (2.7M Cells)
Fine Grid (6.7M Cells)

Real Fine Grid (10.5M Cells)

AMRS5-SADES Grid (2.5M Cells)
1 [ N 1 L1

10°

10!
St (fc/U,)

70 Degre
e
Adap

Sweep Delta Win% at 2dDegrees ACA
.58 million, Mach NumBer=0.069
aﬁj«lesh Refinement Ggfidh3 2M Cells

S

Experimental Range

y

5y

Y—Vortieity
m 1000
200

0

- 500

B 1000

Izso—surface of
Vorticity Magnitude
{Colored by Y-Vorticity)

o IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|




2D Square q
with Rounded Corners S

¢ Data of Polhamus
¢ Re=800,000
¢ a=10°

¢+ Computations made on
structured and
unstructured grids of
various domain sizes and

grid spacing

“* Kyle Squires (P1), Jim Forsythe, Philippe Spalart

“* AFOSR project: Spin prediction
(PM: Tom Beutner)
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rounded-square cross section 6:1 rectangular ogive

corner radius Is 1/4 of the main section 3.5b
diameter endcap 0.5b




Planar Cuts of Eddy Viscosity
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F-15E at 65% alpha

¢ Grid consists of 5.9M cells (half air craft)
e Prismsin the boundary layer (using blacksmith)
» Conversionsto prisms saved 2M cells
o Tetrahedronselseawhere
o Averagefirst y*=0.7
o One man-week to create
o Re=13.6x106°

¢ 2 daysto compute 10,000 iterations on 256
processor s (tempest - MHPCC)

+ Time step and grid sensitivity examined

* Jim Forsythe (Pl), Kyle Squires, Ken Wurtzler, Philippe Spalart

s AFOSR project: Spin prediction
(PM: Tom Beutner)

< AlAA 02-0591




Pty Fu LT




Grid Refinement

Coarse Grid Fine Grid
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Integrated Forces

Ll C |Co] Cu [ %C | %Co | %Cu_
_1exp  lo7si[1744[-0466] [ |

| |Coarse |0.747| 1.677|-0.431] -4.25%| 3.86%)]| -7.62%
0.736/ 1.616[ -0.495| -5.70%] -7.35%

-2.81%| -5.52%

-A 0.852| 1.867| -0.523
Fine ] 0.860




Forced Motion Validation
ofiDetached Eddy

Simulation




Isosurface of vorticity colored by pressure
Side and top views




Azimuthal Pressure Distribution, Wb/2V = 0.2

Comparison at Station 4 (Spin Coeff = 0.2)
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Azimuthal Pressure Distribution, Wb/2V = 0.2

IIIIlIIIIlIIIIlIIIIlIIIIlIIIIlIIIIlIIIIlIIIIlIII"

3 Measured
O DES
-3.5
4 | | | | I | | | | I | | | | I | | | | I
0 90 180 270 360




Preliminary Spin
F-15E at 65% angle of attack - DES

1S

OQ"fld (full aircraft): 6.46 x 108 cells (generated using
VGRIDns)

e prismsin the boundary layers, tetrahedra elsewhere
» conversion to prisms using blacksmith

caveragefirst y*=0.8
« Between resolution of coarse and baseline grids

*timestep = 0.02 (dimensionless using chord length and
freestream speed)

+Re=13.6 x 10°, Mach number = 0.3

¢rotary motion about centroid along freestream velocity
vector




» Bump added to
nose to reproduce
strong yawing
moment seen Iin
flight test

Asymmetric vortices
(zero beta, no spin)




& '\ Vorticity isosurfaces, colored
- by pressure
Side and top views




Embedded LES
Modifications to

Detached Eddy
Simulation




o\ RES€arch — embedded LES for, p=
= turbulent channel flow E

R Importance of including “LES content” in the
boundary layer prior to separation

« flowswith shallow separation

« heed grid densities sufficient to sustain eddy content near the
wall

¢ another view of DES. LES with a complex wall-layer
treatment

subgrid model i
the outer flow "LES region”

"RANS region'

interface, y,, between RANS and LES regions controlled by the grid




Mean Velocity

o DNS of Moser, Kim
and Mansour (1999)
(Re=590)

10°

+

y
“super buffer” between RANS and LES velocity profiles
under-prediction of the skin friction (Nikitin et al. 2000)




Flow Structure near RANS-LES interface

u velocity fluctuation, DES, 129x129x65, y*=250
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Backscatter

o stochastically force the Navier-Stokes eguations (L eith
1990, Mason and Thompson 1993, Carati et al. 1994...)

2
+U ﬂ ui _ B+ fi
'ijﬂxj ‘ij
f. = stochastic force distributed about RANS-LES interface

o purely random or scaling using the eddy viscosity, strain rate,
and timestep

¢ envelope over which forcedistributed

| adjusted so that maximum in envelope at RANS-LES interface




Flow Structure near RANS-LES interface

u velocity fluctuation, DES, 129x129x65, y*=250 Eddy viscosity, DES, 129x129x65, y*=250
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Stress comparison for DES with and without backscatter, 65x75x
1

| | | | | | | —I DES—[TICIJ
- more resolved stress —— DES-res
. ) . — DES-visc
~Wwith backscatter — DES-tot

> ——- DESMWB-mod
o8 —-—- DESAWB-res
—-—- DESMAWB-VISC
-—- DES/MWB-tot




Mean Velocity
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&\ Future Areas of Research (ST}
') Necessary
* Embedded LES to iImprove smulation of
Instabilities generated inside the boundary layer
« Need to continue the research outlined above
o Apply the method to more test cases

+ Unsteady experiments of-
o Static high alpha UCAV configurations

o Pitch and roll maneuver tests with unsteady data
gathered

 Possibly adopt the Boeing 1301 or 1303 as a standard
configuration for several groups to test

o High accuracy methods applied such as PIV, LDV, etc.




Conclusions

o‘wbES has been examined on a wide range of
massively separated flows

« Moderate to greatly increased accuracy over
traditional methods

« Capability to predict unsteady flows at flight Re
» Crucial for high alpha maneuvering
» Crucial for aero-elasticity, aero-acoustics

o Enough confidence built to encourage engineering
use

+ Sever al areas of research needed to apply to
super-maneuvering UCAVswith confidence




